Q.P. Code: 20HS0831

K20

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

B. Tech I Year II Semester Regular Examinations October-2021 DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS

(Common to CE, EEE, ME, ECE & AGE)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a Solve $(x^2 - ay)dx = (ax - y^2)dy$

[L3] **6M**

b Solve $x \frac{dy}{dx} + y = x^3 y^6$.

[L6] **6M**

OR

[L3] **6M**

a Solve $(D^2 - 3D + 2)y = \cos 3x$ **b** Solve $(D^2 + 4D + 3)y = e^{-x}\sin x + x$

[L6] **6M**

UNIT-II

Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2[\log(1+x)]$

[L6] 12 M

An uncharged condenser of capacity is charged applying an e.m.f $E \sin \frac{t}{\sqrt{LC}}$ through leads of self-inductance L and negligible resistance. Prove that at time 't' the charge on one of the plates is $\frac{EC}{2} \left[sin \frac{t}{\sqrt{LC}} - \frac{t}{\sqrt{LC}} cos \frac{t}{\sqrt{LC}} \right]$.

[L5] 12 M

a Form the partial differential equation by eliminating the constants from $z = a. \log \left[\frac{b(y-1)}{(1-x)} \right].$

[L2] **6M**

b Solve by the method of separation of variables

[L3]**6M**

 $3u_x + 2u_y = 0$, where $u(x, 0) = 4e^{-x}$

Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ with u(0,y) = 0 = u(x,0), u(l,y) = 0 and

[L3]12M

 $u(x,a) = \sin(\frac{n\pi x}{1})$

UNIT-IV

a Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{px}{v}\right)$

[L5]**6M**

b Find the analytic function whose imaginary part is $e^{x}(x\sin y + y\cos y)$.

[L1]**6M**

a Find the bilinear transformation which maps the points $(\infty, i, 0)$ into the points (-1, -i, 1) in w-plane.

[L1]**6M**

b Show that the function $w = \frac{4}{\pi}$ transforms the straight line x = c in the z-plane into a circle in the w-plane.

[L2]**6M** Q.P. Code: 20HS0831

K2U

UNIT-V

a Evaluate $\int_{c}^{c} \frac{\log z \, dz}{(z-1)^3}$ where $c:|z-1|=\frac{1}{2}$ using Cauchy's integral formula.

[L5] 6M

b Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$.

[L2] **6M**

OR

Evaluate
$$\int_0^{2\pi} \frac{1}{a + b\cos\theta} d\theta = \frac{2\pi}{\sqrt{a^2 - b^2}}, a > b > 0$$

[L5] **12M**

*** END ***